站内检索:
 
您的位置: 青海新闻网 /  青海新闻

K8彩票1

K8彩票

来源: 西宁晚报    作者: 宁亚琴    发布时间: 2018-12-13 23:13    编辑: 易 娜

  在某种意义上说,韦达标志着数学从古老的自然哲学传统中独立出来,成为一个自圆其说的符号系统。与同样与传统割裂的力学一样,现代数学是用合法性(合规则性)取代了对合理性的诉求。

  这样我们才能够理解,为什么一个现代小学生就可以轻松地理解“负数”的概念,而古代最伟大的数学家却理解不了。这是因为思考的方向完全不同,他们的出发点是现实的事物及其关系,而我们的出发点的是符号及其运算规则。,彩66彩票—路线  比如负数、无理数、虚数之类的东西,它们作为抽象符号,被抽象的那个现实的事物究竟是什么呢?这些问题直到20世纪也没有完全争论清楚。然而在符号代数的视野下,符号不再总是被用来指代一个具体的量,而是可以指代一个“一般的数”。数本身没有任何具体性,而是完全中性的,没有单位或量纲。于是,人们可以把某个方程究竟有什么现实意义这一问题搁置一边,而专注于演算符号之间的运算规则。

  韦达定理的推导似乎并不难,事实上一个学过初学代数的中学生就足以完成这一推导——对于任意形如ax2+bx+c=0的方程,只要把方程左边化为(x-x1)(x-x2)=0的形式,x1和x2就是两个根了,说白了也就是几步四则运算罢了。,  比如负数、无理数、虚数之类的东西,它们作为抽象符号,被抽象的那个现实的事物究竟是什么呢?这些问题直到20世纪也没有完全争论清楚。然而在符号代数的视野下,符号不再总是被用来指代一个具体的量,而是可以指代一个“一般的数”。数本身没有任何具体性,而是完全中性的,没有单位或量纲。于是,人们可以把某个方程究竟有什么现实意义这一问题搁置一边,而专注于演算符号之间的运算规则。,  这样我们才能够理解,为什么一个现代小学生就可以轻松地理解“负数”的概念,而古代最伟大的数学家却理解不了。这是因为思考的方向完全不同,他们的出发点是现实的事物及其关系,而我们的出发点的是符号及其运算规则。

  比如负数、无理数、虚数之类的东西,它们作为抽象符号,被抽象的那个现实的事物究竟是什么呢?这些问题直到20世纪也没有完全争论清楚。然而在符号代数的视野下,符号不再总是被用来指代一个具体的量,而是可以指代一个“一般的数”。数本身没有任何具体性,而是完全中性的,没有单位或量纲。于是,人们可以把某个方程究竟有什么现实意义这一问题搁置一边,而专注于演算符号之间的运算规则。,  胡翌霖,  广义上讲,早在欧几里德时,就会用ab表示a点到b点之间的线段,在中世纪数学家那里,有时会更简略地用b表示线段AB。但线段a和系数a还不是一回事,用a表示一条线段,因为前者是一个具体的对象,或者说是一段有确定长度的量,而后者是一个纯粹的“数”,没有单位的“数”。于是这里我们就遇到了韦达工作的又一项标志性的意义:把古希腊以来数学家坚持明确区分的数与量给混同了,并把量的同类性原则消解掉了。

,快三计划稳赢版  韦达符号代数的建立,意义不仅在于改变了人们解方程的方法,更重要的是,改变了人们对于数学与现实关系的理解。人们自古以来就善于运用各种抽象符号,文字本身就是一种抽象符号。但在古代,抽象符号的意义始终附着于被抽象物本身,当人们对抽象符号进行运算的时候,心目中想的始终还是被抽象物之间的关系,符号只是一种方便言说的缩写代号,当人们进行数学运算时,其实是在通过符号,求解某些现实事物之间的关系。所以人们对于符号背后究竟指代的是什么,总是非常谨慎的。,  广义上讲,早在欧几里德时,就会用ab表示a点到b点之间的线段,在中世纪数学家那里,有时会更简略地用b表示线段AB。但线段a和系数a还不是一回事,用a表示一条线段,因为前者是一个具体的对象,或者说是一段有确定长度的量,而后者是一个纯粹的“数”,没有单位的“数”。于是这里我们就遇到了韦达工作的又一项标志性的意义:把古希腊以来数学家坚持明确区分的数与量给混同了,并把量的同类性原则消解掉了。

  韦达的这个方程,古代数学家还真的不会解。韦达之所以被称作现代代数学之父,他最伟大的贡献并不是在于给出了方程的根的通式,而是给出了方程本身的通式。这一创造标志着现代数学对古代数学完成了最大的颠覆。,  韦达的这个方程,古代数学家还真的不会解。韦达之所以被称作现代代数学之父,他最伟大的贡献并不是在于给出了方程的根的通式,而是给出了方程本身的通式。这一创造标志着现代数学对古代数学完成了最大的颠覆。,  韦达符号代数的建立,意义不仅在于改变了人们解方程的方法,更重要的是,改变了人们对于数学与现实关系的理解。人们自古以来就善于运用各种抽象符号,文字本身就是一种抽象符号。但在古代,抽象符号的意义始终附着于被抽象物本身,当人们对抽象符号进行运算的时候,心目中想的始终还是被抽象物之间的关系,符号只是一种方便言说的缩写代号,当人们进行数学运算时,其实是在通过符号,求解某些现实事物之间的关系。所以人们对于符号背后究竟指代的是什么,总是非常谨慎的。

相关新闻↓
[ 打印 ]
关于我们 | 法律顾问 | 广告服务 | 联系方式
青海省国际互联网新闻中心主办      版权所有:青海新闻网
未经青海新闻网书面特别授权,请勿转载或建立镜像,违者依法必究
e-mail: webmaster@qhnews.com 新闻登载许可国新办[2001]55号 青icp备08000131号